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ABSTRACT

The coordination of multifunction phased array radars across networked platforms can en-
able superior functionality and battle space awareness. This thesis formulates and solves
a number of optimization models and heuristic algorithms to analyze and prescribe radar-
to-target assignments and schedules. One optimization model uses full target information
to provide a “best case” assessment of the ability of a given set of radar platforms to track
a collection of targets. A modified version of this model determines the impact on these
results if targets coordinate their maneuvers in order to overwhelm the radar system. We
then consider the more realistic scenario in which the planner’s knowledge is imperfect
and describe approaches for allocating radar assets to targets in that setting. The first such
approach extends an existing two-dimensional geographic allocation method to three di-
mensions. This allows for an allocation of the operating space to radar assets and can
serve as a preallocation heuristic for more sophisticated assignment algorithms. Moreover,
because the existing method does not account for transfers in tasks between geographical
areas, this thesis models the additional workload involved in performing handoffs of targets
between radars.
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Executive Summary

Advanced warships cost in excess of one billion dollars yet remain vulnerable to a single
missile. The proliferation of relatively low cost and increasingly sophisticated unmanned
aerial vehicles, missiles, and decoys provides our enemies the capacity to overwhelm a
ship’s defensive capabilities. The probability of damage from any one threat may remain
low, but the success of a single missile could incapacitate a high value asset. The coordina-
tion of multifunction phased array radars across platforms is critical to obtaining superior
air defense and battle space awareness during periods of high contact density. This thesis
develops several models to analyze target assignments in a multiple-sensor network.

One optimization model provides a “best case” assessment of the ability of a given set of
radar platforms to track a collection of targets. We assume the set of radars have perfect
knowledge of the targets, including the times that each target track begins and ends and
the location of the target throughout this period. This allows the model to optimize the
schedule of radar observations over the entire time horizon and provides a bound for the
real capabilities of a set of radars. A modified version of this model determines the impact
on these results if targets coordinate their maneuvers in an attempt to exceed the resource
capacity of the sensor network. Results suggest that synchronized maneuvers may produce
situations where sensor resource demands exceed network capabilities. This could result
in reduced track quality leading to higher track loss rates.

We also consider the more realistic scenario in which the planner’s knowledge is imper-
fect and describe approaches for allocating sensor assets to targets based on geographic
location. The first method extends an existing two-dimensional geographic allocation ap-
proach to three dimensions. By limiting the amount of the operating space we assign to
a specific sensor, we develop a heuristic approach for preassigning sensors to targets that
reduces the computational demands of more sophisticated assignment algorithms. In the
scenarios examined, the heuristic can perform approximately 40 percent of sensor-to-target
assignments with limited impact on the “best case” assessment results. This could lead
to significant reductions in the real-time computations and data transfer rates required by
sensor-to-target assignment algorithms.

xv



Finally, we investigate the impact of transferring target tracking requirements between sen-
sors by developing a model that permits the inclusion of handoff penalties. In order to do
so, we modify the previously mentioned geographic allocation model by discretizing the
operating space and defining target paths through this space. To account for the additional
resources required when transferring a target between sensors, we assess a handoff penalty
for any sensor that gains part of a target’s path after it begins. For the scenario consid-
ered, we find that significant modifications to the sensors’ regional assignments only occur
if the resource demands for target handoffs account for more than 25 percent of the total
demand.
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CHAPTER 1:

INTRODUCTION

Multifunction phased array radars (MFRs) are capable of performing various tasks in rapid
succession. The performance of target search, detect, and track operations concurrently
with missile guidance functions allow MFRs to deliver superior battle space awareness
and air defense capabilities than previously provided by multiple, single-purpose radars.
Equipped with a communication network capable of sharing target data, a battle group can
leverage the radar resources available on its ships to extend threat detection ranges, enhance
track data, and synchronize defensive missile capabilities across platforms.

While a typical shipborne MFR can track over 100 targets independently (U.S. Navy,
2013), this could prove inadequate in a dense target environment. Combined with friendly
air assets, the expanded availability of unmanned aerial vehicles (UAVs) and decoys pro-
vides the opportunity to overwhelm the tracking capacity of a single MFR with large salvos
and swarm tactics. MFRs require a coordinated approach to maximize search capabilities
while maintaining track quality. The multifunctional nature of modern radars complicates
this process, and platform-level demands or limitations on MFRs may reduce the capacity
available for coordinated search and tracking. This thesis focuses on the allocation of radar
tracking requirements across multiple MFRs to reduce radar resources required for track
maintenance. In this thesis, we define any radar contact as a target, including neutral and
friendly air assets, to conform with the established academic lexicon.

1.1 Motivation and Background
Advanced warships cost in excess of one billion dollars yet remain vulnerable to a single
missile. The proliferation of relatively low cost and increasingly sophisticated UAVs, mis-
siles, and decoys provides the capacity to overwhelm a ship’s defensive capabilities. The
probability of damage from any one threat may remain low, but the success of a single mis-
sile could incapacitate a high value asset (HVA). Coordination of radar resources within a
battle group can increase tracking performance during periods of high contact density. The
successful integration of radar resource management across platforms relies on two critical
pieces of shipboard infrastructure: MFRs and tactical data links (TDLs).
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1.1.1 Phased Array Radar
MFRs consist of several elements, or antennas, spatially separated in an array. The array
is designed to increase antenna gain, to allow for electronic beam formation and steering,
and to determine the direction from which incoming signals arrive. In passive MFRs, a
single power source provides energy to phase shifters attached to each element. When the
phase of emitted radiation between individual elements is shifted, constructive interference
patterns increase energy propagated in the desired beam direction while destructive inter-
ference reduces radiated energy emitted in other direction. By altering the amount of phase
shift between elements, the array can direct radar beams electronically without the need to
physically move any components, as illustrated in Figure 1.1.

Figure 1.1: Beam steering with a linear phased array (from U.S. Navy Naval Air Systems
Command, 2012, p. 3-4.3).

Unlike traditional rotating dish radars, electronic beam steering allows an MFR to cycle
through tasks in various directions without delay. Thus, rather than performing “track
while scan” (TWS), where radar returns obtained during a search are filtered and correlated
to form tracks, MFRs more commonly operate in a “track and scan” (TAS) mode. In TAS,
MFRs employ tracking beams, distinct from those generated for search, for each target
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being tracked. This allows the MFR to use advanced, higher energy techniques to improve
the position accuracy of targets. TAS also allows the MFR to continue to maintain tracks
outside the area in which it may be performing search functions. Additionally, TAS allows
the MFR to maintain different data update rates for tracking and searching. For example,
where a search area may need to be covered every 10 seconds, a known target may have to
be observed every second (Billiter, 1989, pp. 89–92).

While TAS allows for greater accuracy of target data, it also requires significantly more
time and power from the radar than TWS. As the number of tracks increases, TAS may
exceed the resources available to the MFR. The MFR can reduce this burden by using TWS
to monitor long-range or low-priority targets while maintaining high-risk, high-priority
targets in TAS (Billiter, 1989, pp. 93–96).

To prioritize and perform its assigned tasks, an MFR utilizes a radar task scheduler (RTS).
For each time interval TP, the RTS accepts the following inputs: a set of search beams
necessary to explore the assigned search region, a track task list with the required renewal
time for each track, an auxiliary task list with renewal times for each task, and the time to
execute each search, track, and auxiliary task. From this input, the RTS develops a task
sequence for the MFR to perform over the time interval TP and reports any modifications to
input parameters it made while developing the task sequence (Sabatini & Tarantino, 1994,
pp. 219–255).

The electronic steering capability of MFRs permits the RTS to schedule several track tasks
concurrently. For targets at an estimated position, the RTS can calculate the expected time
between pulse transmission and a radar return. Rather than allow the MFR to idle during
this delay, the RTS schedules additional tracking tasks such that the transmissions and
returns for each target do not coincide. This process, known as pulse packing (Bogler,
1990, pp. 252–253) or track interleaving (Billiter, 1989, pp. 99–101), allows an MFR to
update several targets during the same time required to accomplish a single tracking task.

MFRs have been in use for over three decades for aircraft surveillance and tracking (Na-
tional Research Council, 2008, p. 19). Various models and variations are now installed on
warships around the world. Most common on U.S. warships is the AN/SPY-1 radar. The
AN/SPY-1 consists of four arrays positioned to allow 360 degree coverage. It transmits in
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the 2 to 4 Ghz range with a peak power of 4 to 6 MW. As the primary sensor for the Aegis
Weapon System, it conducts horizon and sector searches concurrently with multiple target
tracking and designation (Jane’s, 2012). Figure 1.2 provides an overview of AN/SPY-1
specifications and variants installed on U.S. destroyers and cruisers as well as warships
from five other countries.

Figure 1.2: AN/SPY-1 variants (from Lockheed Martin, 2009).

1.1.2 Tactical Data Links
To develop and maintain a common tactical picture (CTP) among components of a battle
group, networked platforms must be able to distribute information from each sensor in
near real time. Tactical data links (TDLs) provide this capability. A TDL is an electronic
connection between military platforms that allows for the transfer of digital information.
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TDLs typically employ radio communications and transmit in the high frequency (HF) or
ultrahigh frequency (UHF) range. Standardized message formats allow for encrypted direct
communication between computerized tactical data systems at high data rates (Hura et al.,
2000, pp. 107–121). The two primary TDLs in use by North Atlantic Treaty Organization
(NATO) forces are Link-11 and Link-16.

Link-16 is the primary TDL for the distribution of situational awareness information. It
uses UHF line-of-sight (LOS) transceivers to establish a network capable of data rates up
to 238 kilobits/sec. Link-11 has a relatively low data rate of 1200 bits/sec, but operates over
both HF and UHF, allowing for communications beyond LOS (U.S. Army, 2000). Link-22
is currently under development as a replacement for Link-11, providing greater data rates
and a more stable connection over a secure, beyond-LOS TDL.

These TDLs allow radar track data such as position, heading, speed, and identification to
be shared across platforms at rates up to 4,000 tracks per second (Jane’s, 2011). The tracks
held by each platform are compared to determine which tracks correspond to the same
target. The radar tracking system automatically correlates tracks that it determines are
monitoring the same target. It then combines the tracks and all available information into
a single fused track. This process has proven effective, but advances in processor speeds
and TDL data rates provide the opportunity to achieve a superior tactical picture through
the Cooperative Engagement Capability (CEC).

Cooperative Engagement Capability

Rather than transmit processed track data, CEC allows distributed sensors to share unfil-
tered measurements from each observation, such as range, bearing, and elevation. TDLs
distribute these measurements throughout the battle group within microseconds, allowing
each unit to utilize the data as if it were provided by onboard sensors. With each platform
performing the same tracking algorithm on all available data, an identical CTP is available
to each CEC platform (Johns Hopkins Applied Physics Lab, 1995). As Figure 1.3 illus-
trates, combining radar measurement data to produce composite tracks results in a more
accurate contact picture than is possible from correlating multiple tracks across platforms.
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Figure 1.3: Composite tracking with CEC (from Johns Hopkins Applied Physics Lab, 1995,
p. 379).

1.2 Literature Review
The problems associated with correlating multiple-target tracking across multiple sensors
are well documented and analyzed. Bar-Shalom and Li (1995) provide an overview of
many of the principles and techniques developed to address this topic. With the deployment
of MFRs connected by high speed TDLs in the 1980s, the coordinated management of
finite sensor resources to track an increasing number of targets became an active topic of
research.

1.2.1 Centralized Control of Radar Resource Management
The majority of radar resource management literature focuses on the scheduling and tasking
of a single sensor, such as in Bogler (1990) and Blackman (1986). Many of the techniques
developed are feasible in multiple-radar environments controlled by a central scheduler,
though data sharing rates limit the feasibility of their implementation. Most early research
on resource management for multiple radars utilizes a centralized control element to assign
tasks to networked sensors based on task priorities and the sensors’ reported constraints
and capabilities. Nash (1977) provides an early example of such approaches.
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Given “a set of previously acquired and externally prioritized surveillance targets,” Nash
presents an algorithm for the optimal allocation of targets to multiple sensors during the
next time step. To do so, he utilizes the classic transportation problem from linear program-
ming (LP) which schedules the delivery of commodities from supply centers to customers
at minimal cost to the system. In this case, the algorithm assigns sensors to targets in order
to minimize the total cost incurred over the next time step. Costs are defined as a function
of a target’s priority and the estimated track accuracy obtained from the sensor assignment.
Track assignments are limited by the maximum track capacity of each sensor. Nash mod-
ifies the basic transportation problem to allow more than one sensor to track a target. A
benefit of using a version of the transportation problem is the availability of fast, heuristic
approaches that allow for near real time calculations. Another benefit of this approach is
the ability to modify sensor allocation constraints, such as by specifying target assignments
or modeling reduced capacity.

The algorithm provided by Nash is step-wise optimal when the assumptions of indepen-
dence and linearity of track to sensor assignment costs hold. Unfortunately, this greedy
approach does not imply optimality over the total time frame of observations. Since the
formulation optimizes the gains obtained over the next time step vice all future time steps,
a suboptimal allocation of tracking resources may occur. The author acknowledges this
limitation, but suggests one can find a globally optimal solution by integrating the formu-
lation within a dynamic programming process.

Schmaedeke (1993) revisits this formulation, but calculates the predicted gains from
sensor-to-target assignments with data available from the Kalman filter (KF). The KF is
a recursive algorithm for estimating a target’s physical state based on a series of measure-
ments over time. For each observation, the algorithm updates a multivariate distribution for
each state variable being tracked. As a means of measuring the potential benefits of sensor
assignments, the KF provides a measure of the information content in a target’s probability
density function (PDF). Since it is possible to calculate the updated PDF a priori when us-
ing a KF, the information content of a target’s PDF after the next time step can be calculated
for each possible sensor assignment. Using the LP formulation developed by Nash (1977),
one can determine the optimal sensor assignments. McIntyre and Hintz (1996) describe a
search and track computer simulation that demonstrates the benefits of this approach over
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random sensor-to-target assignments.

By defining track accuracy estimates directly from the KF, Schmaedeke provides a rational
and concrete means of determining the benefits provided by sensor to target assignments.
However, suboptimal allocation of resources may still occur due to the formulation’s step-
wise approach. Furthermore, defining the information content with the KF introduces ad-
ditional restrictions. The functions developed do not provide for prioritizing targets or
weighting a target’s state variables when deciding the value of information gained from
sensor assignment. Additionally, for a traditional KF, the calculated information gain is
unaffected by target maneuvers. To increase the value assigned to observations of ma-
neuvering targets, Schmaedeke and Kastella (1998) recommend replacing the KF with in-
teracting multiple model Kalman filters (IMMKF). By tracking and weighting several KF
motion models continuously, the IMMKF provides a computationally intensive but more
robust track estimate. During maneuvers, there is greater uncertainty as to which of the
KF models is accurately tracking the target. This results in a reduction of the information
content present in the IMMKF model. Thus, the possible information gain from a sensor
assignment increases. This makes sensor assignment to maneuvering targets more valuable
and thus more likely to occur.

Rather than rely on the strict calculation of information gain prescribed by Schmaedeke
and Kastella (1998), Blackman (1986, pp. 397–401) suggests employing utility theory
to determine sensor allocation. To maximize overall utility, the algorithm calculates the
marginal utility of assigning a sensor to a given track for each possible pairing. The util-
ity of a target’s track depends on the value placed on different levels of track accuracy.
The marginal utility is the difference in expected utility after the next time step with or
without the sensor to target assignment. The system designer can control the shape of the
utility function to ensure sensor assignments only add significantly to the marginal utility
if they provide actionable level target accuracy. The marginal utility is also dependent on
the weighted probabilities of a target’s type and threat assessment, both before and after
sensor assignment. After calculating the marginal utility for each sensor-target pair, an op-
timal assignment algorithm appoints sensors to targets. Unlike the approach presented by
Nash, Blackman’s approach requires a one-to-one assignment of sensors to targets, which
prohibits its direct application to real world tracking problems.
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Veeramachaneni and Osadciw (2006) shift the focus from optimizing the next scheduled
observation time to a more comprehensive approach for multiple sensor resource alloca-
tion. Rather than optimizing a target’s track accuracy, they focus on the allocation of avail-
able radar dwell time and energy between search and track functions for a sensor network.
The objective function is the weighted sum of two competing objectives: the search cov-
erage area and the probability of detection of tracked targets. Each time the target picture
transforms, the controlling element must resolve the problem and reassign the radars. To
approach an optimal solution in near real time, the authors suggest implementation of a
particle swarm optimization algorithm (Eberhart & Kennedy, 1995). While this heuristic
approach does not guarantee optimality, it does allow for continuously updated solutions to
provide a best known allocation of time and energy in near real time situations.

To overcome the limitations of step-wise optimal assignments, this thesis begins by assum-
ing universal knowledge of targets. This includes knowledge of when the sensor network
gains and loses a track and the target positions during this timeframe. This assumption
provides the ability to determine an optimal observation schedule for each target that min-
imizes the use of radar resources over the entire timeframe considered. While this is not
a feasible approach for real radar scheduling, it does provide a “best case” bound on the
resources required to maintain a given track picture. We relax this assumption later in
the thesis when we investigate geographical partitioning methods. Unlike Veeramachaneni
and Osadciw, this thesis assumes there is a specified amount of radar resources available
for tracking. For simplification, we do not analyze the interrelationship of tracking capacity
with other radar functions.

1.2.2 Distributed Control of Radar Resource Management
While centralized radar resource management techniques can provide optimal solutions,
data sharing rates and computation speeds limit their feasibility in a distributed sensor
network. Recent research attempts to overcome these technical limitations by develop-
ing decentralized decision making algorithms. By developing distributed solutions that
can approach optimality over time, the algorithms provide actionable decisions even when
communications are limited.

Dorman, Leung, Nicholson, Siva, and Williams (2005) suggest two decentralized decision
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making algorithms for sensor to target assignments and weapon allocations based on infor-
mation theory. The first expands on the approach developed by Nash (1977). Instead of
delivering all cost and threat data to a central planner to solve the LP problem and distribute
target assignments, the network distributes the necessary data to all platforms which inde-
pendently solve the LP to determine the targets for which they are responsible. While this
approach can guarantee optimality within a tactical time frame for many networks, delays
in data sharing can prevent the algorithm from reaching an optimal solution.

To reduce the volume of data shared between platforms, Dormon et al. (2005) developed
a second algorithm based on a decentralized auction. Rather than transfer all cost and
threat data between each set of platforms, sensors only exchange one bid for each target.
By limiting the information that must be shared, this algorithm reduces the possibility of
exceeding a network’s data transfer capacity. The bids are used by each platform to run
the decentralized auction algorithm independently and determine the optimal target assign-
ments. The current framework for target data fusion across TDLs could allow these bids to
be distributed by slightly reformatting the standardized target messages. This would limit
the additional throughput capacity required for implementation and ensure the algorithm is
scalable for situations with greater target density.

Additional approaches to decentralized decision making rely on self-organization pro-
cesses. Self-organization, or emergent behavior, is a process where meaningful global
patterns emerge from the interactions of simple agents with each other and their local envi-
ronment using only local information and without any centralized control (Camazine et al.,
2001, pp. 7–8). For radar networks, the agents are sensor schedulers and the local environ-
ment is the shared track picture. Stigmergy, a subset of self-organization in which agents
only interact indirectly with one another through their impact on the environment, underlies
the resource management approaches proposed in Weir and Sokol (2009) and Lambert and
Sinno (2011).

Weir and Sokol (2009) suggest local decision rules for radar management based on data
from a shared track file. These rules result in global patterns consistent with optimal results
obtained from centralized control. To determine which tracks should be observed over the
upcoming time period, each platform independently develops scores for each target based
on potential track accuracy improvements. The proposed scoring function is dependent on
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the track state, track error covariance, range, and measurement uncertainties. Each sensor
ranks the tracks to ensure the most effective observations happen first. Following these
observations, the platforms update their shared track picture and score and rank the targets
again. Appropriate local scoring criteria result in radar resource decisions that approach
optimal solutions without central decision making or direct interaction between platforms.

Beyond the potential to approach optimal resource allocation, Weir and Sokol (2010) also
demonstrate that self-organizing radar managers react rationally to network degradations.
When disruptions to network capabilities occur, the radars return to optimal decisions for
independent operations. If one sensor loses communication with the network, the same
local scoring criteria adapt to the new network configuration and radar resource decisions
approach optimality over time.

Rather than focus on a sensor’s potential impact on the future track picture, Lambert and
Sinno (2011) develop local rules for resource allocation based on the information gain
achieved for a given target during previous observations. Though radars do not interact di-
rectly in stigmergic systems, they can sense the impact of others through their environment.
By comparing the local information gain to the global information gain for an observed
target, a radar can assess how important its contribution is to the global track picture. If
the local information gain is significantly smaller than that observed in the global track file,
Lambert and Sinno suggest measures to induce the radar to focus on other targets for which
it may have a greater impact.

These algorithms developed for distributed control of resources still require a significant
amount of data transfer and computational effort each time sensor-to-target assignments
are optimized. A portion of this thesis investigates the effect of assigning sensors to targets
based on geographic location. The minimal computational requirements of this method
are conducive to real time implementation. However, reliance on geographic partitioning
alone oversimplifies the problem, leading to periods where sensors lack the resources to
adequately monitor their assigned targets. While not a replacement for the approaches
mentioned in this section, the assignment methods developed in this thesis may be able to
reduce the real time computational demands of these algorithms by reducing the problem
size.
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1.3 Problem Statement and Assumptions

This thesis investigates how to manage a distributed network of radar assets when operating
in a dense target environment. Several factors complicate the optimal use of available radar
resources. The multifunctional nature of modern radars places demands on resources often
not known to the network. Furthermore, multiple objectives exist when scheduling radar
resources, namely minimizing emitted power and dwell time. Optimization of one of these
does not necessarily result in optimal or near optimal results for the other. To continue
exploring this problem, we focus solely on the tracking function of MFRs and make some
simplifying assumptions.

To remove directional and environmental effects, we assume variations in sensor effective-
ness only depend on range and emitted power. That is, we do not consider the complex
effects of weather, land objects, and the directional limitations of MFR arrays on radar
tracking. We also assume that all targets have identical tracking requirements; that is,
we do not attempt to utilize knowledge of targets to prioritize them by threat levels. The
sensor-to-target assignment models in this thesis do not rely on these assumptions, but the
scenarios considered in our analysis comply with them. These assumptions are necessary
for the partitioning models presented.

Common to all models, we assume that any radar return above a signal to noise ratio (SNR)
threshold of 13 dB provides the same information gain to the sensor network. This means
that there are no false positive or false negative returns, that the radar assigns each return
correctly to its track, and that the resultant track quality after any observation is equivalent.
Finally, we assume that track data is distributed to all sensors by the TDL without time
delay and unrestricted by throughput capacity.

This thesis is organized as follows. Chapter 2 introduces an optimal radar to target assign-
ment model that provides a best-case radar schedule for networked MFRs. We extend this
model to allow for analysis of the potential difficulties introduced to the radar scheduling
process by the coordinated maneuvers of targets. Chapter 3 introduces an optimal partition-
ing model for assigning tracking requirements to sensors based on the geographic location
of targets. We also present two variations to this model. The first permits regions of space
to remain unassigned, allowing any sensor to perform tracking in these regions. The sec-
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ond accounts for the potential difficulties of handing off targets between sensors. Chapter
4 presents the analysis performed using each of these models, and Chapter 5 provides a
conclusion and recommendations for further research.
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CHAPTER 2:

OPTIMAL RADAR ASSIGNMENT IN A KNOWN

TARGET ENVIRONMENT

In this chapter, we investigate the performance bounds of networked sensors. Specifically,
we develop a model to determine the best use of radar resources when multiple MFRs
coordinate through an infinite-capacity network with zero time delay. We consider an envi-
ronment in which the sensor scheduler has universal knowledge of each target’s locations
and maneuvers over the period of time tracking occurs. Eliminating the uncertainty in fu-
ture events allows the scheduler to optimally allocate resources over the entire period of
interest. While this algorithm is not deployable as a real-world radar scheduling technique,
it does provide a best-case bound to which one can compare other algorithms.

2.1 Multifunction Radar Capabilities
For a radar to recognize a return from a target, the signal to noise ratio (SNR) of the tar-
get echo must exceed an established threshold. A number of factors effect how much of
a radar’s emitted energy is sensed by the radar receiver. External variables, such as the
target’s range and environmental noise, as well as internal factors, such as antenna gain
and electrical losses, effect how strong the radar signal is compared to all sources of noise.
Equation (2.1) is a reproduction of the radar equation provided in Sabatini and Tarantino
(1994, p. 27). Each factor presented, whether controlled by the radar or not, can impact the
SNR.

SNR =
PtransGtransGrecλ 2F transFrec2σo

(4π)3R4k0T0FnLtot
τ (2.1)

where

Ptrans = Transmitted power [MW]
Gtrans = Transmitter antenna gain in the direction of the target [dimensionless]

Grec = Receiver antenna gain in the direction of the target [dimensionless]
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λ = Transmit wavelength [cm]
F trans = Transmitter propagation factor [dimensionless]

Frec = Receiver propagation factor [dimensionless]
σo = Target radar cross section (RCS) [m2]

R = Range to the target [m]
ko = Boltzmann constant [1.38x10−23J/K]
To = Standard Temperature [290 K]
Fn = Receiver noise figure [dimensionless]

Ltot = Total losses for the radar system [dimensionless]
τ = Radar pulse width [µsec]

Table 2.1 provides values for the variables in Equation (2.1) derived from the benchmark
problem for phased array radars developed in Blair and Watson (1996). The radar cross
section (RCS) of all targets is established as one square meter for simplification, but the
following formulations are not limited to this value or to a constant RCS throughout the
trajectory of the targets. Blair and Watson establish eight discrete waveforms available for
use with varying radar pulse widths, τk.

Ptrans 1 MW
Gtrans 4752
Grec 4752

λ 7.5 cm
F trans 1
Frec 1
σo 1 m
Fn 2
Ltot 144.5

No. τ (µsec)

1 1.35
2 2.25
3 4.05
4 5.85
5 11.70
6 23.40
7 46.8
8 93.6

Table 2.1: Radar parameters and pulse width options (after Blair and Watson 1996).

The radar pulse width must be long enough to ensure adequate energy is emitted to obtain
an SNR above the sensor’s threshold. We assume that an SNR above 13 dB provides perfect
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detection without false alarms. Furthermore, we assume that any SNR above the threshold
results in the same track accuracy and requires the same update rate. Thus, the radar utilizes
the waveform that meets the SNR threshold with the least emitted energy.

2.2 Sensor-to-Target Assignment Model
We now describe a model that optimizes the schedule of observations required from net-
worked sensors for a given set of tracks. For this model, we make the additional assumption
that we have prior knowledge of each track’s duration and location. This allows the model
to determine the optimal schedule over the entire time horizon. To limit computational
effort, we establish a dynamic set of waveforms from each sensor that are available for
observing each target at each time step. Since we assume each observation provides the
same information gain, the set only contains the waveform from each sensor that meets the
SNR threshold with the least emitted energy.

Decision variables Xi, j,t,k describe the optimal scheduling of track observations by sensors
to minimize the amount of power and time invested in tracking and limit the impact of
delays due to radar resource limitations. We assume that longer time delays result in a
continued reduction in track quality and an increasing probability of track loss. The model
utilizes multiple linear constraints to capture this nonlinear impact on the quality of a track-
ing schedule. This ensures the model limits both the total time of all delays and the length
of those delays.

2.2.1 Formulation
Index Use [˜Cardinality]

t ∈ T time steps [˜100]
i ∈ I sensors [˜3]
j ∈ J targets [˜30]
k ∈ K waveforms [˜8]
l ∈ L time steps during the required observation interval |L| [˜10]
n ∈ N segments of a piece-wise linear delay penalty function[˜2]
( j, t) ∈M ⊂ J×T time steps t in which target j is tracked [˜3000]
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Given Data [Units]

τk pulse width of waveform k [µsec]
ptransmit transmitter power [MW]
interleave_limit number of targets a sensor can observe per time step [targets]
mn slope for penalty constraint n [J]
bn intercept for penalty constraint n [J]

Calculated Data [˜Cardinality]

(i, j, t,k) ∈ P⊂ I×M×K set of waveforms k from sensor i that are capable of ob-
taining an SNR above the threshold SNRmin for target j at
time t with the least emitted energy [˜9000]

P =

{
(i, j, t,k)|( j, t) ∈M and

k = argmin
k

(
τk|

Ptrans
k Gtrans

i, j,t Grec
i, j,tλ

2F trans
i, j,t Frec2

i, j,t σo
i, j,t

(4π)3R4
i, j,tk0T0Fn

i Ltot
i, j,t

τk ≥ SNRmin

)}

Decision Variables [Units]

Xi, j,t,k binary decision to observe target j with sensor i at time t with
waveform k [binary]

NO_LOOK j,t binary decision to miss required observation of target j between
times t +1 and t + |L| [binary]

DELAYj,t number of time steps by which an observation of target j has been
delayed as of time t + |L|+ 1 according to the observation fre-
quency requirement [time steps]

DELAY _PENALTYj,t penalty for number of time steps that an observation of target j at
time t+ |L|+1 is delayed beyond the required observation interval
|L| [J]
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Formulation

min
X ,

NO_LOOK,
DELAY,

DELAY _PENALTY

∑
(i, j,t,k)∈P

(
ptransmit(τk−

τ1

t
)Xi, j,t,k

)
+ ∑

( j,t)∈M
DELAY _PENALTYj,t (2.2)

s.t.

∑
j,k:(i, j,t,k)∈P

Xi, j,t,k ≤ interleave_limit ∀i, t (2.3)

∑
l,i,k:(i, j,t,k)∈P

Xi, j,t+l,k +NO_LOOK j,t ≥ 1 ∀( j, t) ∈M (2.4)

DELAYj,t−DELAYj,t−1 ≥ 1− (1−NO_LOOK j,t)t ∀( j, t) ∈M (2.5)

DELAY _PENALTYj,t ≥ mn(DELAYj,t−DELAYj,t+1)+bn ∀n,( j, t) ∈M (2.6)

NO_LOOK j,t ,DELAYj,t ,DELAY _PENALTYj,t ≥ 0 ∀( j, t) ∈M (2.7)

Xi, j,t,k ∈ {0,1} ∀(i, j, t,k) ∈ P (2.8)

2.2.2 Discussion
The objective function (2.2) expresses the total cost of a solution as the sum of the energy
transmitted and the penalties for delaying observations of a target. To eliminate multi-
ple optimal solutions and reduce computational time, the objective includes the factor τ1

t to
force sensor observations to occur as early as possible without requiring additional observa-
tions or more costly waveforms. DELAY _PENALTYj,t models a piecewise linear, convex
penalty function that is large enough to ensure an observation is performed, if possible,
rather than accept the penalty.

Each constraint (2.3) prevents the scheduling of observations by a single sensor at a given
time in excess of the interleaving limit. To ensure each target is monitored at the required
sampling frequency, each constraint (2.4) requires at least one observation to occur within
|L| time steps of t or records the missed observation.

Constraints (2.5) and (2.6) combine to calculate the penalty for delaying observations. Con-
straints (2.5) determine the amount of time by which observations of target j are delayed
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at time t + |L|. If NO_LOOK j,t is zero, then DELAYj,t is zero. Otherwise, DELAYj,t is
the number of consecutive time steps NO_LOOK j,t has been equal to one up to time t.
Constraints (2.6) utilize DELAYj,t to calculate the penalty for delaying observations. The
constraints only assess a penalty for the time that a delayed observation actually occurs. For
those time steps with a delayed observation, the difference between consecutive DELAYj,t

is equivalent to the number of time steps that the schedule delays the observation. As
Figure 2.1 illustrates, multiple linear constraints combine to obtain a non-linear penalty
response. This causes one long delay to be more expensive than multiple shorter delays
of the same total length. Table 2.2 provides an example of the calculations performed by
constraints (2.5) and (2.6). Constraints (2.7) and (2.8) define the domains of the decision
variables.
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DELAY_PENALTY Constraints

Figure 2.1: Delay penalty constraints.

t · · · 14 15 16 17 18 19 · · ·
NO_LOOK j,t · · · 0 0 1 1 1 0 · · ·

DELAYj,t · · · 0 0 1 2 3 0 · · ·
DELAY _PENALTYj,t · · · 0 0 0 0 5000 0 · · ·

Table 2.2: Notional delay penalty calculation.
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Figure 2.2 provides a geographical representation of results from the sensor-to-target as-
signment model for a network of three sensors maintaining 20 tracks. The sensors, rep-
resented by circles, are stationary throughout the problem and the targets, represented by
black arrows, move along their predetermined tracks at constant speed and direction. The
hash marks are observations along the targets’ paths. The size and color of the hash marks
correspond to the power utilized and the sensor performing the observation, respectively.

Figure 2.2: Geographic display of results for scenario involving three sensors and 20 tar-
gets.

Figure 2.3 (a) provides a timeline of the results presented in Figure 2.2. For this example,
the interleave_limit is set to one, constraining each sensor to observe at most one target
per time period. The observation frequency |L| is 10 time steps. Figure 2.3 (b) displays
the power requirements for each sensor to execute the optimal observation schedule as a
running average over 10 time steps.
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Figure 2.3: Timeline and power demands of optimal results for scenario involving three
sensors and 20 targets.

2.3 Maneuverable Targets
To investigate the potential effects of airborne adversaries capable of coordinating their
operations, we extend the sensor-to-target assignment model to allow for target maneu-
vers. Following a target maneuver, the sensor network must perform additional observa-
tions to account for the reduction in track accuracy. To model this, we declare the subset
( j, t) ∈Q⊂M to define the time t that target j maneuvers. We then increase the number of
observations required during the period of length |L| immediately following the maneuver.
For each of the observations following a maneuver that the sensor network is unable to
schedule, the formulation assesses a penalty.
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2.3.1 Formulation
In addition to the indices, data, and variables described in Section 2.2, we introduce the
following nomenclature.

Index Use [˜Cardinality]

( j, t) ∈ Q⊂M time step t at which target j maneuvers [˜30]

Given Data [Units]

turn_looks number of observations required during normal observation fre-
quency |L| following a target maneuver [observations]

turn_penalty penalty for number of observations missed following a target ma-
neuver [J/observation]

Decision Variables [Units]

MISSED_LOOKS j number of required observations missed follow-
ing the maneuver of target j [observations]

Formulation

min
X ,NO_LOOK,

DELAY,
DELAY _PENALTY,
MISSED_LOOKS j

∑
(i, j,t,k)∈P

(
ptransmit(τk−

τ1

t
)Xi, j,t,k

)
+ ∑

( j,t)∈Q
DELAY _PENALTYj,t

+ turn_penalty∑
j

MISSED_LOOKS j

(2.9)
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s.t.

∑
(l,i,k,t):( j,t)∈Q and (i, j,t,k)∈P

Xi, j,t+l,k +MISSED_LOOKS j ≥ turn_looks ∀ j

(2.10)

∑
( j,k):(i, j,t,k)∈P

Xi, j,t,k ≤ interleave_limit ∀i, t

(2.11)

∑
(l,i,k):(i, j,t,k)∈P

Xi, j,t+l,k +NO_LOOK j,t ≥ 1 ∀( j, t) ∈M

(2.12)

DELAYj,t−DELAYj,t−1 ≥ 1− (1−NO_LOOK j,t)t ∀( j, t) ∈M

(2.13)

DELAY _PENALTYj,t ≥ mn(DELAYj,t−DELAYj,t+1)+bn ∀n,( j, t) ∈M

(2.14)

NO_LOOK j,t ,DELAYj,t ,DELAY _PENALTYj,t ≥ 0 ∀( j, t) ∈M

(2.15)

MISSED_LOOKS j ≥ 0 ∀( j, t) ∈M

(2.16)

Xi, j,t,k ∈ {0,1} ∀i,( j, t) ∈M,k

(2.17)

2.3.2 Discussion

The objective function (2.9) expresses the total cost of a solution as the sum of the en-
ergy transmitted and the penalties for delaying or missing observations on a target. It is
similar to the objective function (2.2) from Section 2.1 with one additional component.
turn_penalty∑

j
MISSED_LOOKS j penalizes a solution for failing to perform the addi-

tional observations required following a target’s maneuver. As with DELAY _PENALTYj,t ,
the turn_penalty is large enough to ensure observations are performed, if feasible, rather
than accept the penalty.
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Constraints (2.10) reflect the required turn_looks during the period |L| following a ma-
neuver by target j at time t. Each additional observation that the set of sensors fails to
schedule during this timeframe is tallied as MISSED_LOOKS j. Constraints (2.11) prevent
the scheduling of observations by a single sensor at a given time in excess of the interleav-
ing limit. To ensure each target is monitored at the required non-maneuvering sampling
frequency, each constraint (2.12) requires at least one observation to occur within |L| time
steps of t or record the missed observation.

Constraints (2.13) and (2.14) combine to calculate the penalty for delaying observations
and are identical to constraints (2.5) and (2.6) discussed in Section 2.2.2. Constraints
(2.15),(2.16) and (2.17) define the domains of the decision variables.

The computational requirements of this problem preclude an exhaustive analysis of net-
works of significant size or complexity. In an attempt to reduce the computational effort,
we developed an attacker-defender model that allowed for one maneuver per target over the
time horizon. The formulation failed to provide computational benefits because the solver
had to execute the subproblem for each possible maneuver schedule before obtaining op-
timal results. To remove the unnecessary calculations of maneuver schemes, we instead
iterated through every feasible combination of maneuvers for the targets to determine the
“worst case” set of maneuvers.

For simplification, we maintain the assumption that each target may perform at most one
maneuver during the planning horizon. Furthermore, for each time step, we assume there is
only one maneuver available to each target being tracked. For example, at any time step, a
target only has the option to turn 90 to the right. Figure 2.4 displays the schedule obtained
following the “worst case” maneuvers for a scenario with two sensors and six targets arriv-
ing every two time steps. The time horizon for this scenario is 20 time steps. The sensors
must observe each target at least once every three time steps. Following a target maneu-
ver, three observations must occur within the next three time steps or a penalty is assessed.
We allow for target maneuvers any time from one time step after target tracking begins
to three time steps before the target track terminates. By preventing later maneuvers, we
ensure that the sensors have the opportunity to perform the required observations following
a target maneuver. In the “worst case” maneuver scheme, the targets synchronize their ma-
neuvers into two blocks to concentrate the tracking demands on the sensor network. The
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decision of the targets to maneuver in different time blocks is a result of the varying track
arrival and departure times. In this scenario, the coordinated decisions of targets result
in insufficient sensor capacity to perform all required observations following maneuvers.
Section 4.1 discusses additional results from this formulation.

Figure 2.4: Optimal observation schedule with “worst case” maneuvers for scenario in-
volving two sensors and six targets.
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CHAPTER 3:

TARGET ALLOCATION BASED ON GEOGRAPHIC

LOCATION

The formulations of Chapter 2 rely on the assumption that the sensors have perfect knowl-
edge of the target locations and track durations. This is useful for identifying trends in
the resultant schedules but prohibits the application of the model in real world situations.
Interestingly, results obtained from these formulations suggest significant regions of the
target operating space are often dominated by a single sensor. Figure 3.1 displays the re-
sults of 120 simulations geographically. Each simulation distributes 25 targets randomly
throughout the operating space while the locations and capabilities of the three sensors re-
main constant. Observations indicate that a single sensor begins to dominate regions as the
distance to the sensor network increases. This suggests that a target’s physical position may
provide enough information for a network to allocate some portion of targets to sensors.

Figure 3.1: Observations from optimal schedules for 120 simulations involving three sen-
sors and 25 targets.
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To investigate the possibility of assigning radars to targets based on geographic location, we
develop a model to partition the physical decision space so as to balance the resultant radar
resource demands between sensors. This model does not rely on the assumption that sen-
sors have perfect knowledge of the targets. Instead, it relies on an estimate of the expected
target density within the operating space. To account for the increased uncertainty intro-
duced by eliminating this assumption, we suggest a relaxation to this partitioning model
that limits the amount of space assigned to a specific sensor and allows any sensor to track
targets in the unassigned regions. This reduces the probability of exceeding a sensor’s
tracking capacity by limiting the sensor-to-target assignments prescribed based on geo-
graphic location. To investigate the impact that transferring target tracking requirements
between sensors has on geographical partitioning, we develop another model to account
for the increased workload inherent in target handoffs.

3.1 Geographic Assignment
To analyze the potential benefits of assigning sensors to targets geographically, we extend
an optimal partitioning model developed by Carlsson (2012) to three dimensions. In addi-
tion, we adjust the formulation to account for radar power requirements, individual sensor
tracking capacity, and varying target densities throughout the physical decision space.

3.1.1 Formulation
To partition space between sensors, we consider three factors. First, to observe a target
at position x, a sensor must emit energy proportional to the fourth power of the range to
the target, as required by Equation (2.1). Second, the assigned regions of space should be
proportional to the capacity that each sensor can provide to tracking functions. Radars in
a degraded status or involved heavily in other functions, such as searching or illuminat-
ing, should handle less of the tracking demands for the sensor network. Third, points in
space should be weighted by the expectation of observing a target at that position during
a scenario. Regions of high target density will result in proportionally greater demands on
radar resources than areas of low target activity. The following mathematical formulation
accounts for these factors.
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Index Use [˜Cardinality]

x ∈ D positions in physical space [infinite]
i ∈ I sensors [˜3]

Given Data [Units]

αi relative capacity of sensor i to conduct tracking
[energy/target/dist4]

ρ(x) expected density of targets evaluated at position x [tar-
gets/time/volume]

pi position of sensor i [unitless]

Decision Variables [Units]

Ri region of space assigned to sensor i [unitless]

Formulation

min
R1,...,Rn

max
i

∫∫∫
Ri

αiρ(x)‖x− pi‖4 dV (3.1)

s.t.

n⋃
i=1

Ri = D (3.2)

3.1.2 Discussion
The objective function (3.1) minimizes the maximum demand on any sensor by choosing
which regions of space to assign to each sensor. The integrand accounts for the sensor
and target attributes previously mentioned as critical to acquiring an optimal partition. The
density function ρ(x) can account for different target types by utilizing Equation (3.3).
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ρ(x) =
n

∑
j=1

β jρ j(x) (3.3)

Parameter β j is a weighting for target type j to account for unique factors, such as RCS,
threat level, and update requirements. The constraint (3.2) ensures all of the physical space
is assigned to at least one of the sensors’ regions.

3.1.3 Dual Formulation
The formulation of Section 3.1.1 permits reformulation as an infinite-dimensional mixed
integer linear programming (MILP) problem. The following formulation is the dual of
the LP problem obtained by relaxing the integer constraint of the MILP problem. This
formulation provides a means of computing the solution to the formulation presented in
Section 3.1.1 by reducing the number of decision variables to a cardinality proportional to
the number of sensors. Carlsson (2012) provides the proof of duality, which is reproduced
in the appendix, and a computational algorithm. Indices and given data remain consistent
with Section 3.1.1.

Decision Variables [Units]

λi dual variable associated with sensor i [unitless]
σ(x) dual variable for tracking sensor assignment to position x [m4]

Formulation

max
λ ,σ

∫∫∫
D

σ(x)dV (3.4)

s.t.
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σ(x)≤ λiαiρ(x)‖x− pi‖4 ∀x, i (3.5)

∑
i

λi ≤ 1 (3.6)

λi ≥ 0 ∀i (3.7)

3.1.4 Dual Discussion

The dual objective function (3.4) maximizes the sum of sensor assignment costs across all
space D. Constraints (3.5) bound σ at position x by the assignment costs for each sensor.
Constraints (3.6) ensure the sum of all λi do not exceed one. Constraints (3.7) define the
domains of the decision variables λi.

Assigning regions with Equation (3.8) results in optimal partitioning. The appendix pro-
vides an adaptation of the theorem and proof from Carlsson (2012) for our formulation.
Each location x in D is assigned to sensor i only if the cost λiαi‖x− pi‖4 is less than the
cost of assignment to any other sensor.

Ri =
{

x ∈ D | λiαi‖x− pi‖4 ≤ λ jα j
∥∥x− p j

∥∥4 ∀ j 6= i
}

(3.8)

This formulation provides several benefits for a distributed radar network. First, it permits
inclusion of the critical factors established in Section 3.1.1. Second, it is scalable for the
inclusion and removal of sensors. The dynamic nature of radar networks in an adverse
environment requires the partitioning process to allow for changes in network size and
geometry. This formulation allows for the recalculation of partitions at speeds consistent
with the transitions of sensor network structures. Finally, the partitioning is adaptable to
fluctuations in individual radar tracking capacity. If new demands or limitations on sensor i

reduce the amount of resources available for tracking, the region assigned to that radar can
be reduced proportionately by varying the value of αi. A sensor’s declaration of reduced
capacity through the TDL, or a loss of communication with the network, will allow the
other sensors to calculate their newly assigned regions.
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Figure 3.2 displays an expected target density function ρ(x) for a three dimensional sce-
nario with a single HVA and three directions of approach for targets. Three networked
sensors are positioned between the HVA and the threat axes. Applying the geographic
partitioning model, each sensor is assigned the regions displayed in Figure 3.3.

Figure 3.2: Three dimensional target density for one HVA with three directions of ap-
proach.

Figure 3.3: Optimal partition of space for target density in Figure 3.2.
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3.2 Relaxation of Geographic Assignment
By partitioning physical space for each sensor, the sensor-to-target assignment problem
reduces to that of determining which region the target falls in. This provides for a signif-
icant reduction of real time computational efforts for radar scheduling, but it also results
in time periods that overwhelm individual sensor tracking capacities while under-utilizing
other sensors. This results from intervals of time during which targets concentrate within a
region at levels in excess of the time-averaged target density.

To account for the time variance in target densities, we reduce the amount of space D as-
signed to a specific sensor by including parameter γ in Equation (3.8), resulting in Equation
(3.9). Location x in D is assigned to a partitioned region only if there exists a sensor i whose
cost λiαi‖x− pi‖4 is less than the cost of assignment to all other sensors by at least γ . This
results in an unassigned region in which targets may be tracked by any sensor.

Ri =
{

x ∈ D | λiαi‖x− pi‖4 ≤ λ jα j
∥∥x− p j

∥∥4− γ ∀ j 6= i
}

(3.9)

Figure 3.4 displays the results of a uniform average target density with varying values of
γ . As the magnitude of γ increases, the inequality becomes more difficult to satisfy and
Equation (3.9) assigns less of the original space D to a specific sensor. As the range from
the sensor network increases, the inequality becomes easier to satisfy as the magnitude of
λiαi‖x− pi‖4 becomes much greater than γ . We present further results and analysis from
this formulation in Section 4.2
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Figure 3.4: Effects of γ on the geographic partitioning results for three sensors in a uniform
average target density.

3.3 Geographic Assignment with Handoff Penalties
In real world applications, transferring tracking responsibilities between sensors can con-
sume additional radar resources. The uncertainty of a target’s relative bearing and range,
the dependence of RCS on the target and sensor geometry, and the potential for environ-
mental interference can require additional effort by the newly assigned radar to establish
the required track quality. To include these additional radar resource costs in a partitioning
scheme, we introduce a model that incorporates handoff penalties.
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3.3.1 Formulation
To account for handoffs, we discretize the formulation introduced in Section 3.1.1 and
add a penalty for expected target tracks entering a region. To assess the penalty, we define
specific directional target paths through the discretized space. The model penalizes a sensor
if one of these paths enters its assigned region.

Without additional constraints, a target’s assigned region may include the specified target
paths to prevent a handoff penalty while ignoring the area between the path and the sensor.
To prevent this, we enforce star convexity of the regions. For a discrete cell to be part of
a sensor’s assigned region, all of the cells between it and the sensor must also be in that
region. The resultant mathematical formulation follows.

Index Use [˜Cardinality]

i ∈ I sensors [˜3]
j ∈ J targets [˜30]
k ∈ K geographic position (alias k′) [˜2500]

Sets

(k,k′, j) ∈ P k′ is the discrete position that follows k along the path of target j

(k,k′, i) ∈ N k′ is the neighboring discrete position closest to sensor i for position k

Given Data [Units]

pi,k energy cost to monitor discrete position k with sensor i [J]
ρk target density at geographic position k [targets/s]
α penalty for permitting handoffs [kW]
µ weighting factor to prioritize objectives [unitless]

Decision Variables [Units]

Z energy demands on maximally tasked sensor [J]
Xi,k binary decision to assign position k to sensor i [binary]
Yi,t,k binary decision to gain target j with sensor i at position k [binary]
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Formulation

min
X ,Y,Z

Z +µ

(
∑
i,k

ρk pi,kXi,k +α ∑
i, j,k

Yi, j,k

)
(3.10)

s.t.

Z ≥∑
k

ρk pi,kXi,k +α ∑
j,k

Yi, j,k ∀i (3.11)

Yi, j,k ≥ Xi,k−Xi,k′ ∀i,
(
k,k′, j

)
∈ P (3.12)

Xi,k−Xi,k′ ≤ 0 ∀i,
(
k,k′, i

)
∈ N (3.13)

∑
i

Xi,k ≥ 1 ∀k (3.14)

Yi, j,k,Xi,k ∈ {0,1} ∀i, j,k (3.15)

3.3.2 Discussion
The objective function (3.10) minimizes the energy demands on the maximally tasked sen-
sor and, subordinately, minimizes the overall energy demand. Constraints (3.11) ensure
that Z tracks the maximum energy demanded of any sensor by bounding it by the energy
demands of tracking and handoffs for each sensor. To enforce a handoff penalty, constraints
(3.12) require Yi, j,k to be one if sensor i is assigned target j at position Xi,k but was not as-
signed the previous location along the target’s path, Xi,k′ . Constraints (3.13) enforce star
convexity of the assigned regions by ensuring that a discrete position k is not assigned to
sensor i unless the path between i and k is also assigned to i. Constraints (3.14) ensure that
each position Xi,k is assigned to at least one sensor. Constraints (3.15) define the domains
of the decision variables.

To demonstrate the results of this formulation, we project the target density function in
Figure 3.2 onto two dimensions and discretize the results. Figure 3.5 displays the new
expected target density within a 50 x 50 hexagonal grid. The three black lines represent the
target paths for which the model assesses penalties if a handoff between sensors occurs.

Figure 3.6 presents the optimal results from this formulation when there is no handoff
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penalty and when the penalty for handoffs is large. The results with no handoff penalty
are similar to those we obtain with the continuous formulation of Section 3.1. When the
penalty becomes adequately large, the cost of handoffs exceeds the costs of reassigning
space to maintain track paths within a single sensor’s region.

Figure 3.5: Two dimensional target density for one HVA with three directions of approach.

Figure 3.6: Results of geographic assignment with handoff penalties for the target density
in Figure 3.5.
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CHAPTER 4:

RESULTS AND ANALYSIS

This chapter presents the results and insights from formulations presented in Chapters 2
and 3. We performed all computations on a Dell Precision T1650 PC with a 3.40 GHz
Intel Core i7-3770 CPU and 16 GB of RAM. To solve the geographic assignment model of
Section 3.1, we utilized MATLAB rev. R2012b. We implemented the other optimization
models using the General Algebraic Modeling System (GAMS) rev. 236 and solved them
with CPLEX 12.2.0.2. The details of specific problem instances, including approximate
model sizes and computation times, are included in the following sections.

4.1 Maneuverable Targets
We investigate the impact of coordinated target maneuvers by using the model described in
Section 2.3. For each scenario, the model contained approximately 250 decision variables,
of which approximately 170 were discrete, and 200 constraints. Solution times were less
than one second. To determine the “worst case” maneuver scheme, we considered 4096
possible maneuver combinations. The total model run time averaged two hours.

Figure 4.1 displays the schedules obtained for four scenarios. In each scenario, two sensors
are tasked with tracking six targets. The sensors are capable of observing at most one
target per time step. Upon commencement of tracking, the sensor network must observe
each target at least once every three time steps. Thus, when tracking all six targets, the two
sensors are operating at their maximum capacity. The sensors track each target for eight
time steps. Following a target maneuver, three observations must occur within the next
three time steps or a penalty is assessed. Maneuvers are not allowed after the fifth time step
during which the target is tracked. This ensures the sensors have three time steps in which to
perform the required observations. Each scenario varies only in the times at which tracking
of the targets commence. In the first scenario, the sensors commence tracking all targets
during the first time step. Target tracks commence at one, two and three second intervals
in the second, third, and fourth scenario, respectively. For each scenario, we consider all
feasible combinations of target maneuvers to determine which has the greatest impact on
the radar tracking schedule.
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Figure 4.1: Optimal observation schedules with “worst case” maneuvers for four scenarios
involving two sensors and six targets.
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As demonstrated in the first scenario, the targets attempt to synchronize their maneuvers in
order to maximize the demands for sensor assets in the following time steps. This results in
a failure to perform sufficient observations on any target following the maneuver. As the in-
terarrival time of target tracks increases, the targets become less effective at overwhelming
sensor resources due to the inability to synchronize all of their maneuvers. By the fourth
scenario, in which target tracks are offset at three second intervals, the targets are no longer
able to coordinate their maneuvers so as to overwhelm the sensors.

These results suggest that adversarial targets could overwhelm a sensor network operating
at or near its tracking capacity by effectively coordinating their operations. The impact on
track quality of delayed observations, especially during this period of varying target speeds
and directions, could result in the loss of a large number of hostile tracks. However, the
effects diminish as targets lose the capability to effectively synchronize maneuvers.

4.2 Geographic Assignment
We now use the models from Sections 3.1 and 3.2 to analyze the performance of sensor-
to-target assignments based on geographic partitioning. Each instance contained between
200,000 and 450,000 decision variables, of which 5,000 to 15,000 were discrete. The num-
ber of constraints ranged from 6,500 to 13,000. Typical solution times ranged from 10
seconds to 30 minutes per simulation. Solution times increased significantly when obser-
vation delays occurred.

Figure 4.2 and Figure 4.3 present the results of six scenarios involving three stationary
sensors. Each scenario consists of a different number of targets, from 25 to 33, that have
randomly assigned arrival and departure times within the 105 time steps considered. A
sensor can perform at most one observation per time step, and the sensor network must
observe each target at least once every 10 time steps or accept a delay penalty. Thus, a delay
occurs any time the sensor network is monitoring more than 30 targets simultaneously.
We conduct 120 simulations of target tracks for each scenario. For each simulation, we
determine the “best case” schedule of observations by implementing the sensor-to-target
assignment model of Section 2.2.
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Figure 4.2: Average delays, observations, and transmitted energy for scenarios involving
various target densities.
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Figure 4.3: Delays, observations, and transmitted energy for each simulation of scenarios
involving various target densities.
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To investigate the effectiveness of the geographical partitioning approach developed in Sec-
tion 3.2, we choose various values for γ and then solve for the “best case” schedule. The
model restricts sensor assignments in the partitioned regions by only assigning waveforms
from the designated sensor to the set of available observations (i, j, t,k)∈ P. For each value
of γ , we obtain the “best case” schedule for 120 simulations of each of the six scenarios.

Figure 4.2 displays the average number of delays, average number of observations required
above optimal, and the average amount of energy required above optimal for each value of
γ and number of targets. Figure 4.3 displays the number of delays, number of observations
above optimal, and amount of energy above optimal required for each simulation. For all
scenarios, the impact on the “best case” schedule appears to be relatively stable until the
partitioning method assigns approximately 40 percent of the target tracks to sensors. After
this point, the number of delays increases significantly as targets overwhelm the sensors’
tracking capacities when they concentrate within a single sensor’s region of responsibility.

We perform similar analyses to investigate the impact of different sensor network sizes and
geometries. The sensor capabilities remain the same as in the previous scenarios. We es-
tablish three new scenarios for comparison: three sensors and 30 targets, four sensors and
40 targets, and five sensors and 50 targets. The number of sensors and targets maintain a
constant ratio across scenarios; this allows us to observe the effect of preassigning sensors
to targets on networks operating at their tracking capacity. Figure 4.4 displays the three
sensor networks, including “best case” results from 60 simulations with and without parti-
tioning. For six values of γ , we obtain the “best case” schedule for 60 simulations of each
of the three scenarios.

Figure 4.5 and Figure 4.6 display the resulting delays, the number of observations, and the
energy emitted. Again, the impact appears to be relatively stable until partitioning accounts
for approximately 40 percent of sensor-to-target assignments. However, the relative impact
of partitioning on the larger networks appear to be greater than that observed with three
sensors. Worth noting are the average number of observations performed by the four- and
five-sensor networks when the partitioning accounts for approximately 80 percent of target
track assignments. Rather than continue the trend of requiring additional observations as
more of the operating space is partitioned, these scenarios utilize less observations on aver-
age than the scenarios where partitioning accounts for approximately 50 to 60 percent of the
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target assignments. This is due to the significant increase in delays for both networks when
the partitioning method preassigns too many targets and overwhelms individual sensors.

These preliminary results suggest that assigning a portion of targets to sensors based on
their geographic location may provide an efficient heuristic approach for reducing the num-
ber of real time sensor-to-target assignments that other, more sophisticated algorithms must
perform.
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Figure 4.4: Observations from optimal schedules, with and without geographic partition-
ing, for 60 simulations of scenarios involving three, four, and five sensors.

46



Figure 4.5: Average delays, observations, and transmitted energy for scenarios involving
three, four, and five sensors.
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Figure 4.6: Delays, observations, and transmitted energy for each simulation of scenarios
involving three, four, and five sensors.
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4.3 Geographic Assignment with Handoff Penalties
To account for resource costs resulting from the transfer of tracking responsibility between
sensors, we utilize the formulation presented in Section 3.3. We consider the scenario
where targets approach a single HVA from three directions. Figure 4.7 (a reproduction
of Figure 3.5) represents the target density obtained by projecting Figure 3.2 onto two
dimensions and discretizing the results into a 50 x 50 hexagonal grid. The three black lines
represent the target paths for which penalties are assessed if a handoff between sensors
occurs. During a target handoff, the sensor receiving responsibility for the target must
perform extra work to establish the required track quality. Thus, the model only assesses a
penalty on the sensor gaining the target.

Figure 4.7: Two dimensional target density for one HVA with three directions of approach.

To determine the potential effects of target handoffs on optimal geographic partitioning, we
vary the handoff penalty α in 1 kW increments from 0 to 5 kW. Each instance contained
approximately 30,000 decision variables, of which all but five were discrete, and 10,300
constraints. Typical solution times were less than two seconds. Figure 4.8 and Table 4.1
display the results of this analysis.
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Figure 4.8: Results of geographic assignment with various handoff penalties for the target
density in Figure 4.7.
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Handoff Penalty Individual Sensor Total Network Number of
(α) Sensor Requirements Sensor Requirements Handoffs
kW kW kW

0 3.97 11.91 2
1 4.97 14.91 2
2 5.53 16.59 1
3 5.67 17.01 1
4 5.79 17.37 0
5 5.79 17.37 0

Table 4.1: Sensor energy demands and number of handoffs for geographic assignments
with various handoff penalties for the target density in Figure 4.7.

When there is no handoff penalty (α = 0kW), the resulting partition matches that obtained
from the continuous geographic partitioning formulation. In this scenario, even without
handoff penalties, one of the target paths remains completely within the region assigned to
Sensor 3 and no handoff occurs. As α increases to 1kW, the other two target paths continue
to transit between regions, but the partitioned regions adapt to the increased demands on
the receiving sensor, Sensor 1. In order to minimize the maximum workload on any sensor,
Sensor 1 shifts some of its region to other sensors, such as the lower right corner of the
operating space, to equalize the increased burden across the sensor network. This transfer
of regions between sensors costs the system additional resources since the range between
the regions and their assigned sensors increases. Thus, while the total handoff penalty in
this case is 2 kW, the total network radar resource requirement rises from 11.91 to 14.91
kW, a 3 kW increase.

When the handoff penalty exceeds approximately 1.5 kW, the costs of accepting two hand-
off penalties exceeds the costs of reassigning regions among sensors and one of the target
paths is completely absorbed by Sensor 1. As the handoff penalty increases to 2 and 3 kW,
regions shift from Sensor 1 to equalize resource demands between sensors.

Around 4 kW, the handoff penalty becomes so high that the sensor network does not accept
any handoffs. In this scenario, each of the sensors maintains one of the target paths from
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start to finish. Any additional increase in handoff penalty has no effect on the partitioned
regions since no handoffs occur.

While the partitioned regions adapt to any changes in handoff penalties, a reduction in the
number of handoffs requires these penalties to be a large percentage of the network’s radar
demands. The system removed a handoff only when the penalties exceeded approximately
25 percent of total demands on the sensor network’s resources. To remove both handoffs,
the total resource requirements for the sensor network increases by 45 percent. Thus, for
the scenario considered, the amount of resources demanded to execute a handoff between
sensors must be relatively high compared to other tracking requirements before it becomes
advantageous to significantly alter the partitioned regions to limit handoffs. Analysis of
additional scenarios may yield insights into the generality of these results.
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CHAPTER 5:

CONCLUSION

The coordination of networked sensors is critical to obtaining superior functionality and
battle space awareness. By synchronizing tracking efforts in a cluttered target environ-
ment, individual platforms can redirect resources to unit-specific operations or other radar
functions. This thesis develops several models to analyze target assignments in a multiple-
sensor network.

We develop an optimization model that uses full target information to provide a “best case”
assessment of the ability of a given set of radar platforms to track a collection of targets. A
modified version of this model determines the impact on these results if targets coordinate
their maneuvers in an attempt to exceed the resource capacity of the sensor network. Re-
sults suggest that synchronized maneuvers may produce situations whose sensor resource
demands exceed network capabilities. This could result in reduced track quality leading to
higher track loss rates.

We also consider the more realistic scenario in which the planner’s knowledge is imperfect
and describe approaches for allocating sensor assets to targets based on geographic loca-
tion. The first method extends an existing two-dimensional geographic allocation approach
to three dimensions. By adjusting how much of the operating space the model assigns to
a specific sensor, we develop a heuristic approach for preassigning sensors to targets that
has the potential to reduce the computational demands of more sophisticated assignment
algorithms. In the scenarios examined, the heuristic can perform approximately 40 percent
of sensor-to-target assignments with a limited impact on the “best case” assessment results.
This could lead to significant reductions in real time computations and data transfer rates
required by sensor-to-target assignment algorithms.

Finally, we investigate the impact of transferring target tracking requirements between sen-
sors by developing a model that permits the inclusion of handoff penalties. In order to do
so, we modify the previously mentioned partitioning model by discretizing the operating
space and defining target paths through this space. Any sensor that gains part of the path
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after it begins is assessed a handoff penalty to account for the additional resources required
when transferring a target between sensors. For the scenario considered, we find that signif-
icant modifications to the sensors’ regional assignments only occur if the resource demands
for target handoffs account for more than 25 percent of the total demand.

5.1 Further Research Topics
Several avenues of research exist to continue investigating this problem. A number of
interesting extensions arise simply by relaxing the assumption that every observation results
in the same information gain.

Radar returns and return-to-track correlation are not without error. An investigation into
the effects of false negative and false positive observations along with the potential for mis-
correlation could lead to a greater appreciation of actual resource requirements for a given
scenario. A possible approach could include utilization of a dynamic programming model
to analyze the potential impacts of choosing different waveforms or delaying observations.

Environmental factors also have a significant impact on radar performance. Future analysis
could explore this effect by adapting some of the models introduced in this thesis to allow
for the emplacement of physical obstacles in the operating space, such as land or weather
events. Additionally, target aspect can affect the RCS observed by different sensors. Ex-
pansion of the models presented in this thesis to allow for unique target RCSs for each
sensor is another possible research topic.

In addition to external factors, design limitations also impact an MFR’s performance. MFR
arrays are not capable of transmitting in all directions. As the angle between the direction
of the radar beam and the array’s broadside increases, the emitted power becomes more
diffuse and less effective at tracking. To overcome these limitations, the AN/SPY-1 MFR
uses four arrays to provide 360 degree coverage. Future research could investigate how a
sensor’s limited coverage angle affects the decision of how to schedule target observations.

By allowing for varying levels of information gain, the possibility arises that the assignment
of multiple sensors to a single target may result in superior track quality. This thesis does
not investigate this possibility and the models presented provide a single sensor-to-target
assignment. Development of a model that allows for multiple sensors-to-target assignment
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during each time step would more closely represent the problem faced by networked MFRs.

While relaxing our assumptions concerning information gain presents numerous challenges
worth exploring, future research could also focus on the heuristic approach presented to
allocate targets to sensors geographically. The proposed benefit of this method is to reduce
the number of sensor-to-target assignment decisions that must be made in real time. Future
analysis could determine the actual reduction in real time computations provided by this
heuristic when implemented with existing assignment models, such as those presented in
the literature review of Section 1.2.

Future research could also compare the results to other geographic assignment models.
It is possible that a simpler approach leads to similar or more effective sensor-to-target
assignment. Additionally, the geometry of the sensor network might impact the effective-
ness of the heuristic. If there are interior sensors, such as in a layered defensive position,
only the exterior sensors have an advantage when observing distant targets. Limiting geo-
graphic assignment to a subset of available sensors may result in superior performance of
the heuristic.

Several of the simulated scenarios result in periods of time during which targets overwhelm
a single sensor’s tracking capability. To account for this, future research could focus on the
development of a contingency algorithm that allows for the reassignment of targets that
oversaturate a region. The algorithm would need to determine which targets become avail-
able for other sensors to observe, when the targets become available, and how to transfer
the responsibility for tracking between sensors.

The challenges of protecting HVAs continue to grow with the rapid proliferation of aerial
assets. Coordination of available defensive capabilities is critical to defeating this threat.
This thesis provides several models for investigating the benefits of networked MFRs.
As long as an effective air defense remains elusive, research of this topic will remain
paramount.
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Appendix: Proof of Duality and Optimality for

Geographic Partitioning

This appendix presents the derivation of the dual problem (Section 3.1.3) for the linear
relaxation of the geographic assignment model presented in Section 3.1 and provides the
proof of optimality for the partition presented as Equation (3.8). This appendix parallels
work presented by Carlsson (2012) with modifications of the formulations to account for
three dimensions and the specific parameters and nomenclature introduced in this thesis.

Derivation of Dual to Geographic Assignment Model

This derivation is a simple proof “sketch” for obtaining the dual formulation by discretizing
the original problem. For a more rigorous mathematical proof, refer to Appendix A of
(Carlsson, 2012).

The geographic partition model considered is provided as Equations (1) and (2).

min
R1,...,Rn

max
i

∫∫∫
Ri

αiρ(x)‖x− pi‖4 dV (1)

s.t.
n⋃

i=1

Ri = D (2)

This problem is reformulated as an infinite-dimensional integer program in Equations 3–6.

min
I1(·),...,In(·)

t (3)

s.t.
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t ≥
∫∫∫

D

Ii(x)αiρ(x)‖x− pi‖4 dV ∀i (4)

n

∑
i=1

Ii(x) = 1 ∀x ∈ D (5)

Ii(x) ∈ {0,1} ∀i,x ∈ D (6)

where Ii(x) is 1 if x is assigned to facility i and 0 otherwise.

Without loss of generality, we can relax the equality constraint of Equation (5). Relaxation
of the integer constraint (Equation (6)) results in the following infinite-dimensional linear
program (Equations 7–10).

min
I1(·),...,In(·)

t (7)

s.t.

t ≥
∫∫∫

D

αiρ(x)‖x− pi‖4 dV ∀i (8)

n

∑
i=1

Ii(x)≥ 1 ∀x ∈ D (9)

Ii(x)≥ 0 ∀i,x ∈ D (10)

Discretization of the operating space into grid cells indexed by k admits the following
formulation (Equations 11–14).

min
x,t

t (11)

s.t.

t ≥ ε ∑
k

ci,kxi,k ∀i (12)

58



n

∑
i=1

xi,k ≥ 1 ∀k (13)

xi,k ≥ 0 ∀i,k (14)

where ε is the volume of each grid cell, ci,k is the value of αiρ(x)‖x− pi‖4 evaluated at the
center of grid cell k, and xi,k represents the fraction of grid cell k assigned to sensor i. The
dual of this formulation is presented as Equations 15–18.

max
q,r ∑

k
qk (15)

s.t.

qk ≤ εci,kri ∀i,k (16)
n

∑
i=1

ri ≤ 1 (17)

ri,qk ≥ 0 ∀i,k (18)

By introducing the variable q′k := qk/ε , we can rewrite the dual as Equations 19–22.

max
q′,r

ε ∑
k

q′k (19)

s.t.

q′k ≤ ci,kri ∀i,k (20)
n

∑
i=1

ri ≤ 1 (21)

ri,q′k ≥ 0 ∀i,k (22)

By reducing ε so that the grid cells become infinitesimal, the dual formulation can be
rewritten as Equations 23–26.
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max
λ ,σ

∫∫∫
D

σ(x)dV (23)

s.t.

σ(x)≤ λiαiρ(x)‖x− pi‖4 ∀x, i (24)

∑
i

λi ≤ 1 (25)

λi ≥ 0 ∀i (26)

This is exactly the dual formulation presented in Section 3.1.3.

Proof of Optimality of Geographic Partitioning Assignment

This section provides the proof that Equation (3.9) (reproduced as Equation (27)) results in
the optimal partitioning of the operating space for the model presented in Section 3.1.1.

Ri =
{

x ∈ D | λiαi‖x− pi‖4 ≤ λ jα j
∥∥x− p j

∥∥4− γ ∀ j 6= i
}

(27)

Theorem. Let λ ∗ be the weight vector obtained by solving the dual problem (Equations
23–26). Then setting

I∗i (x) =

{
1 if x ∈ R∗i

0 otherwise
,

with {R∗1, . . . ,R∗n} = ℜ(D, I,λ ∗), is an optimal partition of D with respect to the infinite-
dimensional integer programming formulation of the primal (Equations 3–6).

Proof. For any nonzero objective value of the dual (Equation (23)), Equation (24) requires
λi > 0 for all i. For reasonable values (i.e., positive) of αi and ρ(x), any feasible combina-
tion of λi > 0 for all i results in a positive objective value. Therefore the optimal objective
value for the dual must be positive and λ ∗i > 0 for all i. It follows from complementary
slackness that Equation (4) is binding for all i (t∗ =

∫∫∫
D

Ii(x)∗αiρ(x)‖x− pi‖4 dV for all
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i). Thus,
∫∫∫
R∗i

αiρ(x)‖x− pi‖4 dV =
∫∫∫
R∗1

α1ρ(x)‖x− p1‖4 dV for all i. Plugging λ ∗ and the

σ∗(x) into the dual yields

∫∫∫
D

σ
∗(x)dV =

∫∫∫
D

min
i

λ
∗
i αiρ(x)‖x− pi‖4 dV

=
n

∑
i=1

λ
∗
i

∫∫∫
R∗i

αiρ(x)‖x− pi‖4 dV

=
n

∑
i=1

λ
∗
i

∫∫∫
R∗1

α1ρ(x)‖x− p1‖4 dV

=
∫∫∫
R∗1

α1ρ(x)‖x− p1‖4 dV (Because
n

∑
i=1

λ
∗
i = 1 )

=
∫∫∫

D

I∗i (x)α1ρ(x)‖x− p1‖4 dV

which completes the proof.
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